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ABSTRACT

We examine the impact of non-Gaussian photometry errors on photometric redshift performance.
We find that they greatly increase the scatter, but this can be mitigated to some extent by incorporat-
ing the correct noise model into the photometric redshift estimation process. However, the remaining
scatter is still equivalent to that of a much shallower survey with Gaussian photometry errors. We
also estimate the impact of non-Gaussian errors on the spectroscopic sample size required to verify
the photometric redshift rms scatter to a given precision. Even with Gaussian photometry errors,
photometric redshift errors are sufficiently non-Gaussian to require an order of magnitude larger sam-
ple than simple Gaussian statistics would indicate. The requirements increase from this baseline if
non-Gaussian photometry errors are included. Again the impact can be mitigated by incorporating
the correct noise model, but only to the equivalent of a survey with much larger Gaussian photometry
errors. However, these requirements may well be overestimates because they are based on a need to
know the rms, which is particularly sensitive to tails. Other parametrizations of the distribution may
require smaller samples.

Subject headings: surveys—galaxies: photometry—methods: statistical

1. INTRODUCTION

Photometric redshifts (Connolly et al. 1995, Hogg et
al. 1998, Benitez 2000) are of increasing importance in
observational tests of cosmology. Predicting photometric
redshift performance has therefore become an important
part of planning large optical surveys. There are two dis-
tinct aspects of performance to consider. First, there are
straightforward goals of accuracy and precision. Second,
to control systematic errors in the downstream science,
one must be able to know, in some cases rather strin-
gently, the accuracy and precision of the photometric
redshifts in the actual survey (Ma et al. 2006, Huterer
et al. 2006). Knowing the actual photometric redshift
precision can be more important than maximizing the
precision. For example, cosmic shear tomography calls
for relatively wide redshift bins (dz ∼ 0.2). Leakage be-
tween bins, to the extent that it is known, can be pre-
cisely incorporated into comparisons between models and
data. This by itself is not very demanding in terms of
photometric redshift precision. However, in a large sur-
vey with very small statistical errors, the leakage must
be known very precisely to avoid nontrivial systematic
errors. Ma et al. (2006) estimate that for cosmic shear
tomography with next-generation surveys, the bias and
rms scatter in each redshift bin must be known to ∼0.003
to avoid degrading the shot-noise-limited constraints on
dark energy.

To first order, photometric redshift performance de-
pends on filter set, signal-to-noise (S/N), and the de-
sired range of redshifts and galaxy types. Here we wish
to call attention to an often overlooked aspect: photome-
try errors. Photometric redshift simulations and real-life
implementations typically assume Gaussian photometry
errors. Real data are more complicated. As one anec-
dote, Cameron & Driver (2007) note that in one cata-
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log of 42 galaxies with both photometric and spectro-
scopic redshifts, there were six outliers, all of which had
questionable photometry due to saturation, neighbors,
or multiple nuclei. In this paper we show that knowing
the true distribution of errors is important for optimiz-
ing photometric redshift precision. We also discuss how
that in turn affects the size of the spectroscopic sample
required to characterize the photometric redshift errors
in a survey.

2. METHODS

We conduct four sets of simulations built around the
following basic setup. We use the Bayesian Photomet-
ric Redshift (BPZ, Benitez 2000) code, which uses a set
of template galaxy spectral energy distributions (SEDs)
and a set of priors to help break degeneracies in color
space. We chose the six SED templates and the HDFN
prior detailed in Benitez (2000). BPZ is representative of
one of two types of methods in the photometric redshift
community. We discuss possible impacts on the other
type, training-set methods, in §5. The choice of filter
set is not important for this demonstration. We use the
same filter set (F300W, F450W, F606W, F814W, J, H,
K) used for the Hubble Deep Field North (HDFN) photo-
metric redshifts discussed in Hogg et al. (1998), Benitez
(2000), and Fernandez-Soto et al. (1999, 2001).

Each simulation generates a synthetic catalog of 6000
galaxies evenly spread throughout the F814W magnitude
range 20–26. This and other aspects of the simulations
are not realistic, but are adopted to facilitate analysis by
covering parameter space evenly. The results presented
here therefore do not apply quantitatively to any real
survey, but they demonstrate the issues. The simulator
uses each galaxy’s magnitude to choose a random type
and redshift following the distributions described by the
priors. It then looks up the synthetic observer-frame col-
ors of that type at that redshift, and adds noise (the char-
acter of which varies with the simulation) before saving
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Fig. 1.— Photometry error distributions, SIM1: 5% Gaussian
(solid black curve); SIM2: 10% Gaussian (dotted red curve); SIM3
and SIM4: 5% Gaussian with exponential tails (dashed blue curve).

the catalog. An unrealistic aspect of the noise in all sim-
ulations is that it is a fixed percentage of the model flux.
That is, every galaxy is observed at the same S/N, re-
gardless of magnitude, redshift, or filter. This is another
analysis convenience. The effect of varying S/N was ex-
plored in one specific case by Margoniner & Wittman
(2007), and will have to be customized to each survey.

We then run the catalogs through BPZ, with the
HDFN prior turned on, and analyze the performance in
terms of δz ≡ zphot−zspec

1+zspec
, specifically the bias δ̄z and the

scatter δzrms.

3. REALIZATIONS

As baselines, we do two simulations with Gaussian
noise: SIM1 with 5% noise (S/N = 20) and SIM2 with
10% noise (S/N = 10). These photometry error distri-
butions are shown in Figure 1. The resulting δz distri-
butions are shown in Figure 2. In both cases, the bias
is small (0.003 or less in absolute value) and not incon-
sistent with zero. The scatter depends strongly on S/N:
δzrms = 0.026 for S/N of 20, increasing to 0.070 for S/N
of 10. We also did a run with S/N = 100, not shown in
the figures: δzrms = 0.004. This is extremely tight be-
cause the quoted S/N is achieved in each band for each
galaxy.

Next, we add non-Gaussian tails to the photometry
error distribution. We adopt a functional form

p(δf) =
1

σ
√

2π + AB
(exp(− (δf)2

2σ2
) + A exp(−|δf |

B
))

where δf is the flux error, σ describes the width of the
Gaussian core, and the parameters A and B describe the
tails. For a given σ, the fraction of galaxies in the tails is
sensitive to changes in the product AB but relatively in-
sensitive to changes in A and B as long as the product is
held constant. There is little published data on realistic
values of A and B. Margoniner & Wittman (2007) briefly
descibe photometry simulations in which synthetic galax-
ies are added to real images from the Deep Lens Sur-
vey (DLS, Wittman et al. 2002). We roughly match the
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Fig. 2.— Distributions of δz: colors and linetypes are as in pre-
vious figure, with the addition of SIM4 (long-dash magenta curve),
which uses the non-Gaussian noise model in the photometric red-
shift estimation.

fraction of objects in that tail, but with two symmetric
tails and σ = 0.05 as in SIM1, by setting A = 0.1 and
B = 0.15 or 3σ. For this choice of A and B, used in SIM3
and SIM4 and shown as the blue dash curve in Fig. 1,
the tails begin to dominate over the Gaussian core at
2.51 times the rms of the Gaussian core, and 9.4% of
the galaxies are “in” the tails, compared to 1.2% falling
outside 2.51σ for a pure Gaussian. The rms of the dis-
tribution is 0.103, very close to that of SIM2.

As a comparison, the photometry error distribution for
bright, unresolved objects in the Sloan Digital Sky Sur-
vey (SDSS) is published in Fig. 3 of Ivezić et al. (2003),
who state that 0.9% of objects lie outside of ±3σ (where
σ = 0.02), vs. 0.3% for a pure Gaussian. This obser-
vation, and the figure, are reasonably approximated by
A = 0.1 and B = 0.0235 or 1.2σ. These tails are much
smaller than used in SIM3 and SIM4, which have 7.3% of
their galaxies outside ±3σ. However, the available SDSS
data are for bright (g < 20.5) point sources. Photom-
etry is notably more difficult for extended sources and
for faint sources. In the DLS simulations, A is consis-
tent with zero for bright (20 < R < 22) galaxies, and
grows steadily with magnitude. Of course, most of the
galaxies in a deep survey are at the faint end. Therefore,
while noting the near-Gaussianity of the SDSS bright
point-source photometry, we believe that heavier tails
are currently more appropriate for faint galaxies in deep
ground-based surveys.

We attribute the Gaussian cores of these distributions
to photon statistics, which is the nominal error reported
by most photometry packages, and the tails to other ef-
fects such as crowding. This is a reasonable approxima-
tion for ground-based data, with many sky photons per
pixel and galaxies usually much fainter than sky. For
space-based photometry, crowding is less important, but
photon statistics are less Gaussian due to the smaller
number of photons. The tails in this paper are meant to
emulate ground-based surveys as described above. We
quantify their impact by estimating redshifts in SIM3 us-
ing the nominal Gaussian photometry error as input to
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BPZ. Averaged over 100 realizations, δ̄z remained small
(0.0038), but δzrms increased to 0.092. The distribution
is shown in as the blue short-dash histogram in Fig. 2.

Clearly, these tails are very harmful. Adding them to
the S/N = 20 distribution more than doubled δzrms. In
fact, doubling the Gaussian photometry noise had less im-
pact on δzrms than did adding these tails. Surveys will
have to control the tails of their photometry error dis-
tributions if they are to reach the photometric redshift
performance expected based on their filter set and S/N.
Modern surveys do recognize this and work to reduce
the tails, but tails will always be present at some level.
Legacy surveys may have non-Gaussian errors frozen into
their data, and new surveys will find it expensive to elim-
inate all non-Gaussian sources of error. Therefore, we
investigate the extent to which knowledge of these errors
can render them less damaging to photometric redshifts.

4. LIVING WITH NON-GAUSSIAN ERRORS

Accounting for these errors is straightforward. In the
BPZ code, the probability of observing colors C given
a model SED type T and redshift z, p(C|T, z) is simply
a Gaussian of width set by the nominal photometry er-
rors for that galaxy. In SIM4, we use the same input
photometry as SIM3 but replace that noise model with
the full heavy-tailed distribution used the generate the
catalog. The resulting δz distribution is shown in Fig. 2
as the long-dash magenta histogram. The outliers in δz
which appeared in SIM3 have now largely disappeared,
and δzrms is down to 0.072. This is comparable to δzrms

in SIM2, which had twice the simulated sky noise, but
no tails.

The scatter in δz increases to 0.082 if one uses the un-
modified BPZ code assuming Gaussian errors, but with
an rms of 0.1 instead of 0.05, to roughly approximate
the wider distribution of photometry errors. As another
comparison case for incorrect noise models, we estimated
redshifts from a SIM2 realization using the SIM1 noise
model. In this case, δzrms changed by only 0.003, which
was not quite significant given the sample size. Thus,
it appears that if the photometry errors are Gaussian,
knowing the width of that Gaussian is not very critical.
We see from Fig. 2 that it is the 1 in ∼500 outlier that
is responsible for the poor performance of SIM3. SIM2
lacks extreme outliers, so qualitatively, its better per-
formance makes sense despite its broader core. Yet this
degree of insensitivity to the Gaussian width is somewhat
surprising.

For comparison, we perform a version of SIM4 in which
the tails are much less prominent, as in the SDSS bright
point-source photometry: σ = 0.05, A = 0.1, and
B = 0.06 (1.2σ). We find that δzrms = 0.031, with
the noise model affecting only the fourth decimal place.
The photometry tails are apparently small enough that
including them in the noise model is not very helpful,
but overall performance is still significantly worse than
with no tails at all. (SIM1 had δzrms = 0.026, while
the variation from realization to realization is ∼ 0.001
and these numbers are quoted after averaging over 100
realizations.) This indicates that even small photome-
try tails can have a significant impact on photometric
redshift performance.

5. DISCUSSION

It is not surprising that tails in the photometry er-
ror distribution can cause outliers in the δz distribution.
However, a number of points are worth remarking:

• Adding heavy tails (comprising ≤ 10% of the galax-
ies) caused more increase in δzrms than did dou-
bling the Gaussian photometry error. In other
words, the photometric redshift performance of a
survey with large tails could be worse than that
of a survey with half the S/N but with no tails.
Surveys should therefore pay close attention to re-
ducing the tails of the color errors. This is not the
same as reducing the tails of the flux errors. As
an extreme example, if an equal fraction of light is
lost in all filters, the colors are unaffected.

• Assuming that non-Gaussian errors can never be
entirely eliminated, the effect of the tails on pho-
tometric redshift performance can be mitigated by
including an accurate noise model in the photomet-
ric redshift process. This will in turn require ex-
tensive Monte Carlo simulations which include all
important sources of non-Gaussian errors, such as
crowding and complex galaxy morphology. In ad-
dition, the importance of the tails is likely to vary
with magnitude, seeing, etc.

• No clear rule is evident for required accuracy of the
noise model. Photometric redshift precision was
not significantly affected when errors and model
were both Gaussian but the rms was wrong by a
factor of two. When errors were heavy-tailed, ap-
proximating them with a Gaussian of the same rms
won back about half of the precision that could be
won back with the fully correct noise model.

• Even very small tails have a measurable impact on
δzrms, but in this case the noise model made no
measurable difference.

The tails also have a disproportionate impact on the
problem of knowing δzrms precisely for each redshift bin,
whereas precision on δ̄z did not suffer substantially. If
the δz distribution is Gaussian, the spectroscopic sam-
ple size required to calibrate δzrms to a desired accu-

racy σcal is ∼ (δzrms)2

2σ2 (this of course assumes that the
spectroscopic sample is representative of the photomet-
ric sample). For σcal = 0.003 and a class of sources with
δzrms = 0.026 as in SIM1, only ∼ 40 galaxies would be
required. However, bootstrap resampling of SIM1 shows
that seven times more galaxies are required to know
δzrms to the same accuracy, due to its non-Gaussian
tails (which stem from the properties of galaxies in color
space, not from the photometry). For SIM2, the factor is
thirteen, presumably because the greater noise in SIM2,
although still Gaussian, allows more near-degeneracies in
color space to come into play. For SIM3 with its heavy
photometry tails, the factor is ∼50. However, this can be
much reduced simply by incorporating the correct noise
model into the photometric redshift estimation. SIM4
requires “only” ∼ 25 times as many galaxies as the Gaus-
sian prediction would suggest, and the Gaussian predic-
tion is itself ∼ 2 times smaller than for SIM4, because
of the smaller δzrms. Of course, it would be preferable
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to reduce non-Gaussian tails in the underlying photom-
etry as much as possible, as dramatically illustrated by
the large remaining differences between SIM4 and either
SIM1 or the simulation with SDSS-like tails.

We caution that this procedure may substantially over-
estimate spectroscopic sample requirements. They are
based on the Gaussian model of photometric redshift er-
rors employed by Ma et al. (2006), who derived a pre-
scription for precision of our knowledge of δzrms. But
the rms of a distribution is driven by its tails, so that the
tails seem to be all-important here. If the photometric
redshift error model used in the cosmological parameter
estimation were modeled differently, the tails could as-
sume a more proportional influence, and fewer spectro-
scopic redshifts would be required to characterize their
effect. Mandelbaum et al. (2007) discuss some related
aspects in the context of galaxy-galaxy lensing.

The applicability of this work to training-set methods
depends on the details of the method. An advantage of
training set methods is that they may “learn” the cor-
rect noise model automatically, and therefore should not
require any modification to reach optimum performance
(which is presumably still much reduced compared to the
no-tails case). But for this to happen, the training set
must be sufficiently large to encompass the non-Gaussian
features of the photometry. This may require a rather
larger training set than would otherwise be required, and
it also requires a training set that is not cleaner than
the full dataset. However, it may be possible to build a

hybrid approach in which detailed knowledge of photom-
etry error distributions from large sets of Monte Carlos
is combined with a modest spectroscopic sample to train
the algorithm.

Non-Gaussian photometry errors may not be a sub-
stantial source of catastrophic outliers in current surveys.
The SIM3/SIM4 tails may be unrealistically heavy, as
there is scant published data on the size of the non-
Gaussian tails for faint galaxy photometry. Further-
more, catastrophic outliers exist even with purely Gaus-
sian photometry errors, due to color-space degeneracies.
However, real-world experience such as that of Cameron
& Driver (2007) and, in a different context, Bolton et
al. (2004), suggests that non-Gaussian errors are often
not negligible. Color-space degeneracies are usually near-
degeneracies, and galaxies become much more likely to
scatter across a near-degeneracy if the the photometry
has non-Gaussian tails.

Our example started from an unrealistically good base-
line of S/N = 20 in each of seven filters and δzrms =
0.026, so the effect of the tails was particularly dramatic.
Surveys starting from a more realistic performance base-
line will not see such a large fractional increase in scat-
ter, but may still see the effect of tails in the overall
error budget. Limiting the tails of the photometry error
distribution and using an accurate error model will re-
duce photometric redshift scatter and greatly reduce the
size of the spectroscopic sample required to calibrate the
scatter.
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